A dense G-delta set of Riemannian metrics without the finite blocking property

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

On the Finite Blocking Property 1197

Introduction. When studying the motion of a point-mass in a polygonal billiard P, we work on the phase space X = P × S 1 suitably quotiented: we identify the points (p 1 , θ 1) and (p 2 , θ 2) if p 1 = p 2 is on the boundary of P and if the angles θ 1 and θ 2 are such that the Descartes law of reflection is respected (see Figure 1). θ 2 θ 2 θ = 0 θ = 0 p 1 = p 2 p 1 = p 2 θ 1 θ 1 Figure 1. The ...

متن کامل

Sobolev Metrics on the Riemannian Manifold of All Riemannian Metrics

On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...

متن کامل

Remarks on the finite derived set property

The finite derived set property asserts that any infinite subset of a space has an infinite subset with only finitely many accumulation points. Among other things, we study this property in the case of a function space with the topology of pointwise convergence. 2000 AMS Classification: 54A25, 54A35, 54D55.

متن کامل

Moduli spaces for finite - order jets of Riemannian metrics

We construct the moduli space of r−jets of Riemannian metrics at a point on a smooth manifold. The construction is closely related to the problem of classification of jet metrics via differential invariants. The moduli space is proved to be a differentiable space which admits a finite canonical stratification into smooth manifolds. A complete study on the stratifica-tion of moduli spaces is car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2011

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2011.v18.n3.a1